Asian Spectator

.
Business Advice

.

Octa’s compelling Ramadan 2023—Memories which become templates for the future

KUALA LUMPUR, MALAYSIA - Media OutReach Newswire - 27 March 2024 - It is time to recall all the Ramadan initiatives the international broker Octa has launched and curated throughout the last year. C...

Yincheng Life Service Announced 2021 Interim Results

HONG KONG, Aug 20, 2021 - (ACN Newswire) - Yincheng Life Service CO., Ltd. ("Yincheng Life Service" or "the Company", together with its subsidiaries, "the Group") (Stock code: 1922) announc...

Preferred Networks Releases Optuna v1.0, Open-source Hyperpara...

TOKYO, Jan. 14, 2020 /Kyodo JBN-AsiaNet/ -- Preferred Networks, Inc. (PFN, Head Office: Tokyo, President & CEO: Toru Nishikawa) has released Optuna (TM) v1.0, the first major version of ...

NICE inContact Provides Australia and New Zealand Customers Ne...

SYDNEY, March 16, 2020 /PRNewswire-AsiaNet/ -- - Free work-from-home module and free voice call ports for health services and information line organisations to handle increased interactions ...

Uniview Opens Manufacturing Base in China and Branch Office in...

HANGZHOU, China, Nov. 16, 2018 /PRNewswire-AsiaNet/ -- Uniview, the global pioneer and leader of IP video surveillance, is committing to providing high-quality and professional services to g...

Annual General Meeting of IATA 2022 to Be Held in Shanghai

SHANGHAI, Oct. 9, 2021 /Xinhua-AsiaNet/-- On 4 October 2021, the International Air Transport Association (IATA) announced at the 77th Annual General Meeting of IATA being held in Boston, USA...

Mothercare Supports Local Partners Parents With SG Cribs 2021 Competition

Through partnerships with local businesses, Mothercare Singapore invites the community to share stories on parenthood and family for a chance to win a nursery makeover in their 2nd annual SG...

App Annie Ascend Unlocks Mobile Advertising Monetization

SAN FRANCISCO, July 14 2020/PRNewswire-AsiaNet/-- App Annie [https://www.appannie.com/en/], the leading mobile data and analytics company, today announced the availability of App Annie Ascen...

Start-up Express Pitching Final showcases innovation

HONG KONG, Jun 29, 2021 - (ACN Newswire) - Start-up Express, an entrepreneurship development programme organised annually by the Hong Kong Trade Development Council (HKTDC), has returned fo...

Fujitsu Successfully Grows Diamond Film to Boost Heat Dissipation Efficiency of GaN HEMT

Fujitsu Successfully Grows Diamond Film to Boost Heat Dissipation Efficiency of GaN HEMT

TOKYO, Dec 5, 2019 - (JCN Newswire) - Fujitsu Limited and Fujitsu Laboratories Ltd. have successfully developed the world's first technology for growing a diamond film with highly-efficient heat dissipation on the surface of gallium nitride (GaN)(1) high electron mobility transistors (GaN HEMTs)(2), which are used in power amplifiers for technologies like weather radars and communications equipment. The new design reduces the amount of heat generated by the devices during operations by 40%, leading to simplification of the cooling system and making it possible to miniaturize radar systems that rely on GaN HEMTs. This improvement to the design will make it significantly easier to install larger numbers of the devices for applications including improved weather forecasting and 5G communications.

Fujitsu Successfully Grows Diamond Film to Boost Heat Dissipation Efficiency of GaN HEMT

Fig. 1 Cross-sectional view of conventional and newly developed diamond film

Fujitsu Successfully Grows Diamond Film to Boost Heat Dissipation Efficiency of GaN HEMT

Fig. 2 Top view of GaN HEMT

Fujitsu Successfully Grows Diamond Film to Boost Heat Dissipation Efficiency of GaN HEMT

Fig. 3 Heat-spreading method and heat dissipation efficiency

This research was partially supported by the Innovative Science and Technology Initiative for Security, established by the Acquisition, Technology & Logistics Agency (ATLA) of the Japanese Ministry of Defense.

Going forward, Fujitsu aims to commercialize its new high-heat-dissipation GaN HEMT amplifiers in fiscal 2022 for use in weather radar systems and next-generation wireless communication systems.

The details of the technology and related research will be presented at the International Conference on Materials Science "2019 MRS FALL MEETING & EXHIBIT" in Boston, USA, from December 1 (Sunday) to December 6 (Friday).

Development Background

In recent years, GaN HEMTs have been widely used as transistors for high-frequency amplifiers in weather radar and wireless communications. In the future, achieving breakthroughs in areas like the highly accurate observation of localized torrential downpours and the creation of a stable millimeter-wave high-speed communication environment for 5G communications will make it necessary to increase the number of radars and base stations deployed in the world by a considerable degree.

Limitations inherent to existing designs continue to prevent an increase in the number of installations, however. The transistors used in radar systems have higher output power due to the need to operate at longer distances, which increases the amount of heat they generate. Cooling equipment is required because of the performance degradation caused by overheating. This remains expensive, and the large size of the entire system, including the cooling apparatus, limits the installation location, making simplification and miniaturization of the cooling equipment an important challenge for designers.

Challenges

One possible way to reduce the size and complexity of the cooling system is to increase heat dissipation efficiency by covering not only the back surface of the GaN HEMT but also the front surface with a diamond film. This diamond film, which possesses excellent heat dissipation properties, would effectively lower the internal temperature of the GaN HEMT. In order to achieve this effect, however, a diamond crystal with large grain size is required to pass heat efficiently so that heat does not accumulate inside the diamond. A high temperature of about 900 degC is usually required to grow such a diamond film, which unfortunately destroys the GaN HEMT underlying the diamond growth. When a diamond film is grown at low temperature (~ 650degC) at which the GaN HEMT is not destroyed, the resulting reduction in thermal energy given to the methane gas used to create the diamond means that the growth of the diamond is incomplete. Using the low-temperature method, it is only possible to grow microscopic diamond particles (or nanodiamonds) of several hundred nanometers or less. Furthermore, each particle becomes an aggregate of crystals facing different directions, which inhibits efficient heat transfer between particles (Figure 1).

About the Newly Developed Technology

To address this challenge, Fujitsu has developed a technology for growing a highly heat-spreading diamond film at low temperatures (about 650 degC) where transistors are not destroyed, and in a world-first, succeeded in demonstrating the operation of a GaN HEMT with a highly heat-spreading diamond film on its surface.

To grow the diamond film with this method, nanodiamond particles with a diameter of several nanometers are placed on the entire surface of the device. The nanodiamond particles are then exposed to methane gas with high thermal energy to convert the carbon contained in the methane gas into diamond, which can then be incorporated into the particles. Carbon, with its high energy, is selectively incorporated into diamonds that point in a particular direction, allowing diamonds that point in the same direction to bond together and grow.

Focusing on the fact that the thermal energy given to methane varies depending on the pressure and the concentration of methane gas during diamond growth, Fujitsu discovered that nanodiamond particles oriented in a specific direction can be selectively enlarged at low temperatures. This makes it possible to convert a nanodiamond into a micrometer-sized diamond 1000 times larger (Figure 2). As a result, heat can easily pass through the diamond and the GaN HEMT can dissipate heat efficiently.

Outcome

By using the newly developed technology, the amount of heat generated during GaN HEMT operation is reduced by approximately 40% compared to without diamond film, and the temperature can be lowered by 100 degC or more. Furthermore, by combining the heat dissipation from the backside of the GaN HEMTs with single-crystal diamond developed by Fujitsu and silicon carbide bonding technology at room temperature (3), the front and back sides of the GaN HEMTs can be covered with a diamond film, which is expected to reduce heat generation by approximately 77% (Figure 3).

This enables the use of small cooling devices for high-performance radar systems that previously required large cooling devices, thereby saving space and making it easier to install a large number of units demanded for advanced weather forecasting and communications technologies.

Future Plans

Fujitsu aims to commercialize high-heat-dissipation GaN HEMT amplifiers in fiscal 2022 for use in weather radar systems and next-generation wireless communication systems.

(1) Gallium nitride (GaN)A wide band-gap semiconductor material that features a higher breakdown-voltage (threshold) than conventional semiconductor materials, such as silicon (Si)- or gallium-arsenide (GaAs).(2) High electron mobility transistor (HEMT)A field-effect transistor that takes advantage of operation of the electron layer at the boundary between different semiconductor materials that is relatively rapid compared to that within conventional semiconductors. Fujitsu led the industry with its development of HEMT technology in 1980, and the technology now underpins much of today's fundamental IT infrastructure, including satellite transceivers, wireless equipment, GPS-based navigation systems, and broadband wireless networking systems.(3) Room Temperature BondingA technology in which surfaces of different materials are cleaned in a vacuum by an argon beam and bonded at room temperature. Also known as surface activated bonding. This can bond materials that have different coefficients of thermal expansion. https://bit.ly/2RsaH0u

About Fujitsu

Fujitsu is the leading Japanese information and communication technology (ICT) company, offering a full range of technology products, solutions, and services. Approximately 132,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (Code: 6702) reported consolidated revenues of 4.0 trillion yen (US $36 billion) for the fiscal year ended March 31, 2019. For more information, please see www.fujitsu.com.

About Fujitsu Laboratories

Founded in 1968 as a wholly-owned subsidiary of Fujitsu Limited, Fujitsu Laboratories Ltd. is one of the premier research centers in the world. With a global network of laboratories in Japan, China, the United States and Europe, the organization conducts a wide range of basic and applied research in the areas of Next-generation Services, Computer Servers, Networks, Electronic Devices, and Advanced Materials. For more information, please see: http://www.fujitsu.com/jp/group/labs/en/.

Fujitsu LimitedPublic and Investor RelationsTel: +81-3-3215-5259URL: www.fujitsu.com/global/news/contacts/

Fujitsu Laboratories Ltd.Devices & Materials LaboratoryE-mail: next-press@ml.labs.fujitsu.com

Copyright 2019 JCN Newswire. All rights reserved. www.jcnnewswire.com

Authors: ACN Newswire - Press Releases

Read more //?#

Magazine

Disparitas pemidanaan: mengapa pelaku kekerasan seksual bisa mendapat hukuman berbeda-beda untuk kasus serupa?

Ilustrasi korban kekerasan seksual.Tinnakorn jorruang/ShutterstockPraktik hukum di Indonesia masih menunjukkan adanya disparitas pemidanaan, yakni ketika ada dua orang atau lebih melakukan tindak pida...

8 aspek penting untuk memastikan keberlanjutan industri nikel dari hulu ke hilir

Isu mengenai hilirisasi nikel Indonesia tengah panas beberapa tahun ke belakang. Ambisi Presiden Joko Widodo untuk menjadikan Indonesia sentra produksi baterai kendaraan listrik (EV) dunia membuat akt...

Gangguan dismorfik tubuh: apa yang perlu kita ketahui tentang kondisi kesehatan mental ini

Selebritas Megan Fox dalam sebuah wawancara dengan Sports Illustrated mengungkapkan bahwa dia memiliki dismorfik tubuh (body dysmorphia). Fox mengatakan: “Saya tidak pernah melihat diri saya sep...



NewsServices.com

Content & Technology Connecting Global Audiences

More Information - Less Opinion