Asian Spectator

Men's Weekly

.

Using AI to predict new materials with desired properties

  • Written by ACN Newswire - Press Releases

Using AI to predict new materials with desired properties

Tsukuba, Japan, Aug 1, 2020 - (ACN Newswire) - Scientists in Japan have developed a machine learning approach that can predict the elements and manufacturing processes needed to obtain an aluminum alloy with specific, desired mechanical properties. The approach, published in the journal Science and Technology of Advanced Materials, could facilitate the discovery of new materials.

Using AI to predict new materials with desired properties

Aluminum alloys are lightweight, energy-saving materials which are used for various purposes, from welding materials for buildings to bicycle frames. (Credit: Jozef Polc via123rf)

Aluminum alloys are lightweight, energy-saving materials made predominantly from aluminum, but also contain other elements, such as magnesium, manganese, silicon, zinc and copper. The combination of elements and manufacturing process determines how resilient the alloys are to various stresses. For example, 5000 series aluminum alloys contain magnesium and several other elements and are used as a welding material in buildings, cars, and pressurized vessels. 7000 series aluminum alloys contain zinc, and usually magnesium and copper, and are most commonly used in bicycle frames.

Experimenting with various combinations of elements and manufacturing processes to fabricate aluminum alloys is time-consuming and expensive. To overcome this, Ryo Tamura and colleagues at Japan's National Institute for Materials Science and Toyota Motor Corporation developed a materials informatics technique that feeds known data from aluminum alloy databases into a machine learning model. This trains the model to understand relationships between alloys' mechanical properties and the different elements they are made of, as well as the type of heat treatment applied during manufacturing. Once the model is provided enough data, it can then predict what is required to manufacture a new alloy with specific mechanical properties. All this without the need for input or supervision from a human.

The model found, for example, 5000 series aluminum alloys that are highly resistant to stress and deformation can be made by increasing the manganese and magnesium content and reducing the aluminum content. "This sort of information could be useful for developing new materials, including alloys, that meet the needs of industry," says Tamura.

The model employs a statistical method, called Markov chain Monte Carlo, which uses algorithms to obtain information and then represent the results in graphs that facilitate the visualization of how the different variables relate. The machine learning approach can be made more reliable by inputting a larger dataset during the training process.

Further informationRyo TamuraNational Institute for Materials Science tamura.ryo@nims.go.jp

Paper: https://doi.org/10.1080/14686996.2020.1791676

About Science and Technology of Advanced Materials Journal

Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials.

Chikashi NishimuraSTAM Publishing DirectorNISHIMURA.Chikashi@nims.go.jp

Press release distributed by ResearchSEA for Science and Technology of Advanced Materials.

Copyright 2020 ACN Newswire. All rights reserved. www.acnnewswire.com

Authors: ACN Newswire - Press Releases

Read more //?#

Magazine

Bencana membuat anak rentan putus sekolah. Apa solusinya menurut riset?

● Bencana meningkatkan risiko anak putus sekolah, jadi pekerja usia dini, hingga mengalami trauma psikologis.● Bencana juga memperlebar ketimpangan pendidikan, terutama bagi anak miskin da...

Siklon yang ‘lemah’ kini bisa memicu banjir mematikan: Dampak nyata perubahan iklim dan pemanasan laut

Pekan terakhir November lalu, sejumlah negara di Asia tenggara dan selatan porak-poranda akibat bencana yang menerjang sejumlah wilayah di negara tersebut. Warga Sri Lanka, Indonesia and Thailand tere...

Penipuan WO Ayu Puspita mirip skema Ponzi, masyarakat perlu waspada

● Pemilik ‘wedding organizer’ atau WO Ayu Puspita jadi tersangka penipuan senilai Rp16 miliar.● Modus WO Ayu Puspita mirip skema Ponzi yang merugikan konsumen.● Ada tiga ...

hacklink hack forum hacklink film izle hacklink หวยออนไลน์matbetPusulabetสล็อตเว็บตรงgamdom girişpadişahbetMostbetpradabetjojobetartemisbet girişslot888trendbetligobet girişpusulabet girişmarsbahis girişcasibom girişcasibom giriştürk ifşaBets10matbetMavibet色情 film izlekralbetnakitbahisjojobetYakabet1xbet girişjojobetGrandpashabetbetofficezbahis türkiyematadorbet adresienjoybetpradabetkingroyalkralbet girişgiftcardmall/mygiftultrabetbets10 girişbetebetmamibetkingroyalcasibomkingroyalbetistugwin288casibomcasino sitelericasibom girişJojobetkingroyal girişkingroyalcasibom girişdeneme bonusumeritkingwinxbetcasibomcasibom girişwbahiswbahisyakabetCasibomBetpuanselçuksportsUltrabet girişDinamobetmasterbettingVdcasinoSekabet girişMarsbahisbetkolikbahiscasinopasacasinomadridbetpasacasinoselcuksportsbetcioyakabetyakabetyakabetjojobetbetpuanyakabetsahabetpacho casinoaertyercasibomvbetcolor pickermeritbet girişkralbet girişultrabet girişultrabet girişultrabet girişbetnano girişcratosslot girişMarsbahisdeneme bonusu veren siteleronwin girişmeritbetultrabetantalya escorttimebetbahsegelultrabetultrabetultrabet girişbahiscasinobahiscasinoultrabetbets10jojobetroyal reelsultrabet 2026Kayseri Escortjojobet girişjojobetgrandpashabetbeylikdüzü escortŞişli Escortbettiltcasibom güncelMavibetaviator gametimebetbahislionistanbul escort telegramcasibomvaycasinoholiganbet girişsatın almarsbahiscasibomatlasbetholiganbet girişkavbet girişsekabet girişcasibomgiftcardmall/mygiftttpat.com링크모음주소모음 주소킹주소모음 주소모아eb7png pokiesbest online casino australiabest online pokies australiabcgame96 casinocrown155 hk casinobest online casino in cambodiaMavibetStreameastgalabetmarsbahisgalabetholiganbet girişjojobetcasibombets10 girişbets10 girişMMA Streamjojobet girişJojobetmatbetvdcasinocasibomcasibom girişasdsadasdasdasdasfdasfasfsadfasdfsdfasdasdasdasdkingroyal girişjojobetbahiscasinograndpashabetpin upmamibetslot gacorcasibombetasusmeritbetcasibompusulabetcanlı maç izlesahabet giriscratosroyalultrabetultrabetแทงหวย24meritkingjojobet